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Abstract. We examine various realistic generalizations of the basic cellular automaton model
describing traffic flow along a highway. In particular, we introduce aslow-to-start rule which
simulates a possible delay before a car pulls away from being stationary. Having discussed the
case of a bare highway, we then consider the presence of a junction. We study the effects of
acceleration, disorder, and slow-to-start behaviour on the queue length at the entrance to the
highway. Interestingly, the junction’s efficiency isimprovedby introducing disorder along the
highway, and by imposing a speed limit.

Cellular automaton (CA) models have become increasingly important in the study of traffic
flow. Although based on a very simple set of rules, these models are remarkable in their
ability to simulate both gross and subtle features of real traffic. In one dimension, Nagel and
Schrekenberg [1] introduced a stochastic discrete automaton model to study the transition
from laminar traffic flow to start–stop-waves as the car density increases. Variations on
the basic model include introducing separation-dependent car velocities [2], the addition of
slower sites and takeover sites [3], studies of the effect of bottlenecks [4] and quenched
disorder [5], etc. Similar models have been introduced for traffic flows in more than one lane
[6], in crossings of one-dimensional (1D) lanes [7] and in two-dimensions [8] with alternate
movements of eastbound and northbound cars simulating the effects of traffic lights. Effects
of inhomogeneities, such as faulty traffic lights [9] and various mean-field theories [10],
have also been studied in 2D.

In this paper we consider traffic flow along a long road, such as a highway, within the
context of a one-dimensional (1D) cellular automaton (CA) array. We employ the Nagel–
Schreckenberg (NS) model [1] and introduce two modifications: a rule which simulates the
disparity between braking and acceleration, and a set of rules which model a junction along
the highway. We begin with a ‘bare’ highway (i.e. no junction) in order to better understand
the model’s behaviour as the parameters are varied; various analytic results are given. We
then introduce the junction and study the flow of cars through it as we vary these same
parameters. We obtain the surprising result that the junction operates more smoothly when
there is disorder on the road itself. Junction performance is also improved by limiting the
speed of cars along the highway.

The basic 1D asymmetric exclusion model is defined on a lattice of lengthN , with N

usually taken to be as large as is computationally convenient. Each site in the CA lattice
has two possible states: ‘occupied’ by a car and ‘vacant’. The rule for updating the state at
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each site for the most basic model is as follows: all vacant sites assume the state of sites to
their immediate left, and all occupied sites assume the state of the site to their immediate
right. This implies that cars move to the right if and only if there is a space to their right.
A car may not move into an occupied site even if the occupying car is moving on in the
same step.

The NS model involves two additional rules that produce a closer simulation of real
traffic. (a) Cars may move with a range of integer speeds,s = 0, . . . , smax. A car with
speedv = s − 1 on the previous step will move in the next step with a speed given by the
lowest of the following quantities: (i)v = s, (ii) v = smax, or (iii) v equal to the number of
vacant sites to its immediate right. This will be referred to as theaccelerationrule. (b) The
cars are subject to a random disordering effect as follows. For each car whose scheduled
speed for the next update isv > 0, there is a probabilityPfault that it will in fact move with
speedv − 1. This will be referred to as thedisorder rule.

The second rule is intended to reflect the flawed behaviour of real (human) drivers. In
this spirit, we will now introduce a further rule, referred to as theslow-to-start rule. Our
rule will model the small, but finite delay before a car pulls away from being ‘static’, i.e.
when it has reached the head of a queue. This can arise from a driver’s loss of attention as
a result of having been stuck in the queue, or from the slow pick-up of his vehicle’s engine.
This rather subtle feature of real traffic is likely to become important at high car densities,
particularly since no such delay is likely to occur as cars decelerate, i.e. as they brake. The
resulting asymmetry is liable to cause queues to lengthen. We define the slow-to-start rule
as follows: a given static car moves either on its first opportunity with probability 1− Pslow

or second opportunity with probabilityPslow. We note that the disorder rule can also cause
cars to be slow in moving off from the heads of queues. However, the disorder rule affects
vehicles of all velocities with equal probability; it introduces a general ‘noise’ into the
system. By contrast, the slow-to-start rule affects only static cars on the first occasion that
they are free to move; it reflects a distinct physical phenomenon of driver behaviour as
described above.

In figure 1 we demonstrate the effect of the slow-to-start rule on traffic flow; in particular
we contrast typical ‘snap-shots’ of the steady state withPslow = 0 (left panel) andPslow = 0.5
(right panel). It is clear that a qualitative change occurs in the distribution as a result of
introducing a non-zeroPslow; the queues become less fragmented and the inter-queue regions
widen. In fact, the two rules compete in this respect: the slow-to-start rule causes queues
to merge while the disorder nucleates new queues. The mean length of queues in the steady
state depends critically on the relative values ofPslow andPfault. We shall see later that this
interplay can have important consequences for highway junctions.

Figure 2 shows results for the fluxf of cars as a function of the car densityρ. The
flux is defined as the number of cars moving in a given step divided by the number of sites,
and is therefore a measure of the highway’s efficiency. The three flux-density relations
obtained from the CA simulation correspond to the slow-to-start rule alone (‘experiment’—
long-dashed curve), the disorder rule alone (‘experiment’—short-dashed curve), and both
rules together (‘experiment’—solid curve). Also shown are the analytical results from
the theory presented below (‘theory’—full circles). Note that theory and experiment are
indistinguishable for the top two curves. These plots are for the casesmax = 1, but the
theory developed below is actually valid for allsmax. The CA results are obtained from
simulations on a chain of 1500 sites. A periodic boundary condition is assumed so that both
the total number of cars andρ are conserved. This is the usual boundary condition for traffic
simulation, although ‘open’ CA models without conservation have also been studied [11].
For each initial configuration of cars, results are obtained by averaging over 1000 time steps
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Figure 1. Each panel displays the distribution of cars along a highway over 500 consecutive
time steps; a black pixel represents a car whilst a white pixel corresponds to an empty cell. The
section of road is 400 cells wide. Left panel:Pfault = 0.25,Pslow = 0; right panel:Pfault = 0.25,
Pslow = 0.5. Typical parameter values for a realistic highway are expected to lie between these
two cases. For both panelssmax = 3.

Figure 2. Flux-density relations (i.e. ‘fundamental diagram’) for various values ofPfault and
Pslow. In all casessmax = 1. The CA simulation results are shown for the slow-to-start rule (long-
dashed curve), the disorder rule (short-dashed curve) and the combination of the two rules (solid
curve). Also shown are the analytic results (full circles). Note that for the upper two curves, the
analytic results (‘theory’) and the CA simulation results (‘experiment’) are indistinguishable.

after the first 2000 steps, so that the long-time limit is approached. This criterion was found
to be sufficient to guarantee a steady-state being reached. For each car density, results are
averaged over 50 different initial configurations.

For the slow-to-start rule acting alone (the long-dashed curve in figure 2) we have chosen
to set the parameterPslow = 0.5. The maximum flux occurs atρ = 0.4. For ρ > 0.4, the
flux decreases linearly with car density. These features can be understood by considering
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the system with a high car density (e.g.ρ = 0.6). There will always be substantial queues
in this limit which do not contribute to the flux. We can estimate the flux if we know
the density of cars in the free-flowing regions or, instead, the average number of sitesn

associated with each free moving car. This quantityn is determined by the rate at which
cars leave the head of the queue bounding the free-flowing region on its immediate left.
Consider the basic model (Pslow = 0). A car will move off from the head of the queue
on every time step; there will then be(smax + 1) sites per car in the free flowing region†.
With Pslow > 0, some cars wait until the second possible time-step before moving from the
head of the queue. Such a car will effectively occupy(smax + 1) + smax = 2smax + 1 sites,
because of the wasted turn when the other free moving cars to its right all movesmax sites
further away. The proportion of such slow cars isPslow, so the average number of sites per
free-moving car isn = (smax+1)(1−Pslow)+ (2smax+1)Pslow = 1+ smax(Pslow+1). Let Y

be the number of free-moving cars andX be the number of cars involved in queues. These
two quantities are related to the total number of sitesN and number of carsρN by

N = X + [1 + smax(1 + Pslow)]Y

ρN = X + Y.
(1)

The flux is entirely due to the free moving cars and is given by

f ≡ Y

N
= 1

(1 + Pslow)
(1 − ρ) . (2)

This function is valid for sufficiently largeρ so as to produce queues in the steady state,
i.e. all ρ for which X > 0. The transition‡ occurs at a densityρ = 1

1+smax(1+Pslow)
. Below

this density, the absence of queues means that all cars are free flowing, andf = smaxρ. A
complete description of the flux is

f =


smaxρ for ρ <

1

1 + smax(1 + Pslow)

1

(1 + Pslow)
(1 − ρ) for ρ >

1

1 + smax(1 + Pslow)
.

(3)

For Pslow = 1
2, the turning point should arise atρ = 2

5, after which the gradient should be
2
3. This analytic result matches exactly with the simulation in figure 2, where the peak flux
lies atρ = 0.4, and the gradient in the regionρ > 0.4 is ≈ 0.65. Such good agreement has
also been found for other values ofPslow and smax. It is interesting to note that strictly in
the limit of Pfault = 0 andsmax = 1, the action of the slow-to-start rule becomes identical
to thecruise-controlrule [13]. However, these two rules arenot identical forPfault > 0 or
smax > 1. We note that the expression in (3) reduces in thePslow = 0 limit to the expression

f =
{

smaxρ for ρ < (smax + 1)−1

(1 − ρ) for ρ > (smax + 1)−1
(4)

which has been obtained by Nagel and Herrmann [12] among others.

† Note that ifsmax > 1, this statement becomes an approximation since it neglects the small region at the head of
a queue where cars are accelerating. However, the approximation is a good one since in thisPfault = 0, Pslow > 0
model the steady-state features asmall number of widely-separated long queues.
‡ If ρ lies in the range 1/(1+ smax(1+Pslow)) to 1/(smax+1), then a certain small sub-set of initial configurations
will result in a steady-state with no traffic queues. The system therefore has two possible steady state solutions for
any ρ in this region; however, the queue-less solution will tend to be ‘washed out’ when we average over many
initial configurations; moreover, it will vanish entirely when we move to the more realisticPfault > 0 model.
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For the disorder rule (short-dashed curve in figure 2) we have chosen to set the parameter
Pfault = 0.1. It turns out that one can derive an exact analytic expression for thissmax = 1
system (see, e.g., [14]). The form is

f = 1
2

(
1 −

√
1 − 4(1 − Pfault)ρ(1 − ρ)

)
. (5)

This may be obtained using an ‘n-cluster expansion’ in which one considers the probabilities
P(c1, c2, . . . cn) of finding a randomly selected string ofn consecutive cells to be in states
c1, c2, . . . cn. Whilst the above exact expression forsmax = 1 can be obtained using just an
n = 2 cluster treatment, it was found that in order to closely model systems with higher
smax, correspondingly larger clusters must be considered. This is understood to result from
long-range correlations that exist in all systems withsmax > 1.

The combined action of these two rules produces the ‘fundamental diagram’ shown as a
solid curve in figure 2, for a system withsmax = 1 and bothPfault andPslow finite. Along this
curve we display (full circles) the analytic results that we obtained from ann = 2 cluster
treatment (see the appendix for an outline derivation). We can see that the fit, whilst good,
is no longer exact. This is an indication that introducing the slow-to-start rule increases
the distance over which correlations exist. In fact, this correlation can be traced to the
lengthening of queues beyond the statistically expected length (cf figure 1).

We now turn to the highway containing a junction where cars may enter and leave.
Two nearby, but non-adjacent, sites are chosen to be the ‘input’ and the ‘output’ sites, with
the input site to the right of the output site so that cars entering must essentially traverse
the entire road before exiting. Associated with the input site is an integerQ which is the
number of cars queuing in the feeder road (or ‘ramp’) waiting to enter the highway. Cars
are added periodically to the input queue(Q → Q + 1); we choose a rate of one car added
every five time steps. WheneverQ > 0 and the input site is vacant, this site becomes
occupied andQ → Q − 1. We delete one car entering the output site for every car added
to the highway so that the total number of cars on the road is conserved, apart from small
fluctuations in short time intervals between the addition and removal of cars. The quantity
Q thus measures the flow of cars through the junction. It is desirable to keepQ low; indeed
real junctions may only be able to support a finite number of waiting cars before becoming
catastrophically locked up.

Figure 3 showsQ̄, the value ofQ averaged over the last 2000 of 4000 steps, as a function
of the disorder probabilityPfault for different values ofsmax and Pslow. A car density of
ρ = 0.5 is chosen for all simulations. The lowest three curves correspond tosmax = 1 and
Pslow = 0, 0.25, 0.5, respectively. WithPslow = 0, Q̄ is small and increases slightly with
Pfault. This is expected since in the steady state of the corresponding junctionless model,
every other site is empty in thePfault → 0 limit. The introduction of a single junction
does not significantly alter this distribution, so cars can easily filter onto the road andQ(t)

remains small for allt . If we increasePslow while settingPfault = 0, Q(t) behaves very
differently, occasionally flaring up to large values. This is shown in the left inset, in which
the number of dots in a column represents the value ofQ, and each successive column is
advanced by five time steps. The typical value of the maximum does of course depend on
the parameters such asρ, Pslow, and the rate at which cars are added to the queue in the
feeder road; however, the appearance of this feature is quite general. In order to understand
the phenomenon we examine the spatial distribution of cars in the steady state. We find
that the slow-to-start rule, with or without the junction, gives a steady state with fewer
but longer queues relative to the basic model. When one of these queues, which move
backwards along the road, passes a junction, it prevents cars from entering the road for a
substantial period of time. It is during this time that the value ofQ increases dramatically.
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Figure 3. Average length of the feeder-road queueQ̄ as a function ofPfault (disorder rule) for
various values ofsmax (acceleration rule) andPslow (slow-to-start rule). Insets: the number of
dots in each column representsQ at a given time-step and each successive column represents
an advance of five time-steps.

It is worth spending a moment looking into why such large queues form on roads (with or
without junctions) employing the slow-to-start rule alone (no disorder, i.e.Pfault = 0). The
explanation lies not in the fact that the cars are slow to move off, but rather in the uncertainty
in this delay, which allows the queue lengths to vary. It is possible for a queue to shrink
to zero, i.e. evaporate completely, but there is no corresponding mechanism allowing for
creation of queues. Since the total number of queued cars remains approximately constant,
it is clear that the average length will increase. The ultimate limit for a closed system is
that all queues merge into one; however, it would take an astronomical time to reach this
state on a long road.

If we now allow bothPfault andPslow to be non-zero, we make the interesting observation
that disorder can improve the junction’s performance. The third curve in figure 3 drops
dramatically asPfault is increased from zero. The value of̄Q is reduced from 1.9 for
Pfault = 0 to 0.5 for Pfault = 0.025. In the corresponding inset, we see that the value of
Q no longer flares up. The disorder rule breaks up the long queues resulting from the
slow-to-start rule alone by increasing thenumberof queues, without significantly altering
the car density in the inter-queue regions. Each momentary driving defect has a chance
of nucleating a queue. As the average length of the queues on the road decreases, the
maximum number of cars waiting to enter also decreases.

The surprising conclusion from the model is that it is ‘beneficial’ to create queues on
the highway. The queues effectively compete with one another for the static cars, the total
number of which remains practically constant over time. When a queue becomes deprived
of static cars it is destroyed, so without the introduction of new queues the road becomes
highly inhomogeneous: only a small number of large queues survive. This inhomogeneity
has a markedly detrimental effect on road junctions, which seize up when one of the large
queues moves past.

Finally we turn to the upper three curves in figure 3, which between them display the
effect of increasingsmax at a fixed value ofPslow = 0.5. We observe that with increasing
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smax, (a) Q̄ increases, and (b) the beneficial effect of increasingPfault diminishes. To
understand observation (a), we note that the queue lengths along the road (which directly
affect Q̄) increase with the choice ofsmax; in fact this occurs for any given values ofPfault

andPslow, so we may take the limitPfault = Pslow = 0 to understand the effect. Since for
ρ > 0.5 the flux is independent ofsmax (see equation (4)) it is clear that assmax increases,
the cars travelling at high speed must be counter-balanced by a greater number stuck in
queues. Observation (b) is due to the inability of the disorder rule to nucleate queues
when it acts on fast-moving cars. For a queue to form spontaneously, a car must be made
stationary. However, the disorder rule only reduces the velocity of cars by one unit, so that
the probability of actually halting a car which initially moves with speedsmax (by the disorder
rule, this would imply decelerating it onsmax consecutive time-steps) falls approximately as
Pfault to the power ofsmax. In real traffic situations, it is indeed the case that jams do not
tend to form spontaneously in regions of a road where cars are moving very quickly.

In conclusion, we have studied the performance of a junction under the action of three
different rules. The acceleration and disorder rules due to Nagel and Schrekenberg were
employed, and we introduced a thirdslow-to-start rule which reflects a feature of real
driving that is distinct from general disorder. Having quoted and obtained analytic forms
describing the effects of these rules on a bare road, we then applied them to the junction. We
measured the junction’s performance by the variableQ, which is the length of the queue of
cars forced to wait in the ‘feeder-road’ or ‘ramp’. We studied in detail the effects when the
road is half-filled with cars, i.e.ρ = 0.5. Our main findings, for which we have provided
qualitative explanations, are as follows: (i) when the cars on a highway are constrained to
move slowly (i.e.smax = 1) the junction’s performance is maximized by introducing a finite
degree of disorder along the road. (ii) As the speed limit is relaxed, i.e. for largersmax,
we note that (a) the performance of the junction is reduced, and (b) the beneficial effect
of disorder diminishes. Noting that forρ > 0.5 the flux along the road is not significantly
altered by the choice ofsmax, we may conclude thatit is desirable to set a speed limit near
junctions on busy single-lane roads.

The systems we have studied were designed to be both plausible and intuitive, and yet
still permit a certain degree of analytical analysis. We believe that the general characteristics
of our model are indeed consistent with personal experience. In order to establish the extent
to which this (or any) CA traffic model makes accuratequantitativepredictions about real
traffic flow, one should clearly make a thorough comparison with empirical traffic data for
the same highway/junction system, if available. Such a comparison lies beyond the intended
scope of this paper.
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Appendix

Here we outline the method for applying the cluster expansion [14] to our model with
smax = 1 and finitePslow. When we consider the state of the array just after movement, we
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see that there are four states that a cell may be in: car moving with velocity 1 (denoted
‘1’); car static due to the action of the slow-to-start or disorder rules (denoted ‘s’); car static
due to blockage ahead (denoted ‘b’); and an empty cell (denoted ‘e’). Following [14], we
can reduce the problem to three possible states by considering the road at an intermediate
stage between one movement and the next. Consider that a single time-step consists of the
following stages: (i) acceleration—all cars are assigned a velocity of ‘1’; (ii) slow-to-start—
all cars that are legitimate candidates may be decelerated to ‘s’ with probabilityPslow; (iii)
blockage—all cars which are blocked from moving have their state changed from ‘1’ to ‘b’;
(iv) disorder—all cars still in state ‘1’ may be decelerated to ‘s’ with probabilityPfault; (v)
movement—all cars in state ‘1’ are moved one cell to the right. Now consider the state of
the road after the action of the acceleration and slow-to-start stages, but before the action
of the blockage stage. In this way we avoid having to consider cells in state ‘b’. When we
come to the expression for the flux we must apply the remaining rules, i.e. consider only
P(10) and apply the factor(1 − Pfault). Recall thatP(c1, c2) is the probability of finding a
randomly selected string of two consecutive cells with statesc1 andc2 respectively. In the
present work we consider only a two-cluster expansion; this was found to be sufficient to
model the corresponding fundamental diagram to within 2% accuracy (see figure 2). The
two-cluster probabilities obey the following identities at all times:

P(S1) = P(SS) = 0 P(S0) = P(1S) + P(0S)

P (01) = P(10) + P(1S)

ρ = P(01) + P(11) + P(S0)

1 − ρ = P(00) + P(10) + P(S0) .

(A1)

With the application of these identities we are left requiring three equations. We employ
the following, which are approximately true in the equilibrium limit:

P(S0) = q(1 − s) (P (1110) + P(0110))

P (11) = ε (qP (1011) + P(1111) + P(0111)) + P(11S0) + P(111S)

+qP (10S0) + P(01S0) + P(011S) + pP (1110) + p(P 0110)

+q(P 101S) + qpP (1010)

P (10) = pP (0100) + qsP (0110) + qP (1000) + q2P(1010) + P(1S00)

+P(0S00) + qP (1001) + qsP (1110) + pP (0101) + pP (1100)

+pP (1101) + P(1S01) + P(0S01) + qP (100S) + pP (010S)

+pP (110S) + P(0S0S) + P(1S0S) .

(A2)

For compactness we have used

p = Pfault q = (1 − Pfault) s = 1 − Pslow . (A3)

The quantityP(WXYZ) is of course expanded in the two-cluster expansion as

P(WXYZ) = P(W |X̄)P (XY)P (Ȳ |Z) (A4)

where the conditional probabilities

P(W |X̄) = P(WX)∑
i P (Wi)

P (Ȳ |Z) = P(YZ)∑
i P (iZ)

. (A5)

Note the important correctionε in the expression forP(11):

ε = (1 − qpP (1̄|1)) . (A6)
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The seven equations contained in expressions (A2) and (A3) are solved simultaneously to
find the quantityP(10) in terms of the constantsρ, Pfault, Pslow. The flux then follows by
f = qP (10).
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